Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Melatonin: A Clock‐Output, A Clock‐Input

Identifieur interne : 000881 ( Main/Exploration ); précédent : 000880; suivant : 000882

Melatonin: A Clock‐Output, A Clock‐Input

Auteurs : J. H. Stehle [Allemagne] ; C. Von Gall [États-Unis] ; H. Korf [Allemagne]

Source :

RBID : ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A

English descriptors

Abstract

In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.

Url:
DOI: 10.1046/j.1365-2826.2003.01001.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
<author>
<name sortKey="Stehle, J H" sort="Stehle, J H" uniqKey="Stehle J" first="J. H." last="Stehle">J. H. Stehle</name>
</author>
<author>
<name sortKey="Von Gall, C" sort="Von Gall, C" uniqKey="Von Gall C" first="C." last="Von Gall">C. Von Gall</name>
</author>
<author>
<name sortKey="Korf, H" sort="Korf, H" uniqKey="Korf H" first="H." last="Korf">H. Korf</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1046/j.1365-2826.2003.01001.x</idno>
<idno type="url">https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000929</idno>
<idno type="wicri:Area/Main/Curation">000919</idno>
<idno type="wicri:Area/Main/Exploration">000881</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000881</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
<author>
<name sortKey="Stehle, J H" sort="Stehle, J H" uniqKey="Stehle J" first="J. H." last="Stehle">J. H. Stehle</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Von Gall, C" sort="Von Gall, C" uniqKey="Von Gall C" first="C." last="Von Gall">C. Von Gall</name>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korf, H" sort="Korf, H" uniqKey="Korf H" first="H." last="Korf">H. Korf</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Neuroendocrinology</title>
<idno type="ISSN">0953-8194</idno>
<idno type="eISSN">1365-2826</idno>
<imprint>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-04">2003-04</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="389">389</biblScope>
</imprint>
<idno type="ISSN">0953-8194</idno>
</series>
<idno type="istex">404AD2392AC6B2D66D5BCC06A8805BFADB17346A</idno>
<idno type="DOI">10.1046/j.1365-2826.2003.01001.x</idno>
<idno type="ArticleID">JNE1001</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-8194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>clock genes</term>
<term>cylicAMP signalling</term>
<term>melatonin</term>
<term>pars tuberalis</term>
<term>period</term>
<term>pineal</term>
<term>suprachiasmatic nucleus</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>District de Darmstadt</li>
<li>Hesse (Land)</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Francfort-sur-le-Main</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Stehle, J H" sort="Stehle, J H" uniqKey="Stehle J" first="J. H." last="Stehle">J. H. Stehle</name>
</region>
<name sortKey="Korf, H" sort="Korf, H" uniqKey="Korf H" first="H." last="Korf">H. Korf</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Von Gall, C" sort="Von Gall, C" uniqKey="Von Gall C" first="C." last="Von Gall">C. Von Gall</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000881 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000881 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A
   |texte=   Melatonin: A Clock‐Output, A Clock‐Input
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021